专利摘要:
一种低耦合多股流复合膨胀空分流程装置,包括原料压缩系统、预冷及纯化系统和低温分离系统,原料气压缩系统包括空气压缩机和增压机;预冷及纯化系统包括空气冷却塔、水冷塔、冷水机组、冷却水泵、冷冻水泵、纯化器、纯化器;低温分离统包括高温增压膨胀机、低温增压膨胀机、主换热器、过冷器、下塔、主冷凝蒸发器、上塔、粗氩塔、粗氩冷凝器、精氩塔、精氩冷凝器、精氩蒸发器。本实用新型在液体产量低于设计值时,工况发生变化时,可以通过关闭1‑2股流体实现。这样避免了机组低负荷运转无法达到或低负荷运转效率低的问题,既保证了变工况问题,还优化了低负荷工况下液体生产的单位能耗。
公开号:CN214333201U
申请号:CN202022445511.8U
申请日:2020-10-29
公开日:2021-10-01
发明作者:张菁菁;王继超;叶芳芳;薛凤杰;郝少华;刘金伟;梁泰航
申请人:Zhejiang Zhihai Chemical Equipment Engineering Co ltd;
IPC主号:F25J3-04
专利说明:
[n0001] 本实用新型涉及的是一种低耦合多股流复合膨胀空分流程,主要适用于生产多种压力氧气和压力氮气产品,同时能生产较多液氮、液氧、液氩液体产品,属于低温空气分离技术领域。
[n0002] 空分装置的主要产品是氧气和氮气,在冶金钢铁、能源化工、电子化学、机械等领域都有广泛应用。钢铁行业是国家重要的原材料工业之一,钢铁行业配套的空分装置必须满足钢厂需要的氧气和氮气产品需求,同时还会生产液体产品供周边需求,随着制造业的发展,特别是沿海一带造船业与电子行业的发展,市场对液氧、液氮的需求不断增加。采用内压缩流程内置液化,生产压力氧气和压力氮气产品的同时生产大量液体,这样既能满足周边市场对液体产品的需求,也能降低氧气产品的单位能耗,液体需求常依赖于市场波动和经济形势的发展,通常会呈现周期性的波动,液体产量的波动对整个空分装置的运行稳定、工况调节和能耗优化都有一定影响,研究低能耗低耦合性的空分流程具有重要的意义,实现空分装置能根据液体市场波动进行灵活调节。
[n0003] 本实用新型为了克服现有技术的不足,而设计了一种结构简单,利用效率高,成本低的低耦合多股流复合膨胀空分流程装置,为实现本实用新型的目的一种低耦合多股流复合膨胀空分流程装置,该装置包括原料气压缩系统、预冷及纯化系统和低温分离系统,所述的原料气压缩系统包括空气压缩机和增压机;所述的预冷及纯化系统包括空气冷却塔、水冷塔、冷水机组、冷却水泵、冷冻水泵;第一纯化器、第二纯化器,所述的低温分离统包括高温增压膨胀机、低温增压膨胀机、主换热器、过冷器、下塔、主冷凝蒸发器、上塔、粗氩塔、粗氩冷凝器、精氩塔、精氩冷凝器、精氩蒸发器。
[n0004] 作为优选:所述空气压缩机连接冷却塔和水冷塔,其中冷却塔和水冷塔分别通过冷却水泵、冷冻水泵和冷水机组连接,所述冷却塔分别第一纯化器和第二纯化器,所述第一纯化器和第二纯化器的后方通过一路管道连接换热器中的下塔,另一路管道连接增压机。
[n0005] 作为优选:所述增压机后方通过三路管道分别连接换热器、低温膨胀机增压端、高温膨胀机增压端,所述低温膨胀机增压端增压冷却后进入换热器,冷却后抽出至低温膨胀机膨胀,膨胀后进入下塔,所述高温膨胀机增压端增压后进入换热器,一部分冷却成液空并节流后,一起送入下塔,另一部分经换热器冷却至一定温度后中抽进入高温膨胀机进行膨胀,膨胀后的空气进入换热器进一步冷却至接近露点温度,进入下塔精馏,所述高温膨胀机与低温膨胀机并联设计,装置调节更灵活,在液体产量低时,可关闭1台或2台膨胀机。
[n0006] 作为优选:所述下塔连接液氮泵和过冷器,该连接上塔,上塔连接粗氩塔,所述粗氩塔上方设有粗氩冷凝器,该粗氩冷凝器与精氩塔连接,所述精氩塔下方设有精氩蒸发器,所述主冷凝蒸发器连接液氧泵,液氧泵与换热器连接。
[n0007] 本实用新型的气体产品的压力、液体产量与空分装置中机组的配置息息相关,不同于常规空分流程中1股、2股流膨胀制冷及换热,引入低耦合多股流复合膨胀的空分流程,即采用高、低温膨胀机及两股高压膨胀的复合流股进行并联设计,利用超过4股流体的复合膨胀,利用空气在不同温度下进行膨胀对外做功,为空气分离和液体生产提供冷量,使得换热器的换热温差更加均匀,总体温差更小,从而使得能量损失大幅度降低。当液体产量低于设计值时,工况发生变化时,可以通过关闭1-2股流体实现。这样避免了机组低负荷运转无法达到或低负荷运转效率低的问题,既保证了变工况问题,还优化了低负荷工况下液体生产的单位能耗。
[n0008] 图1为本实用新型的结构示意图。
[n0009] 下面将结合附图对本实用新型作详细的介绍,如图1所示一种低耦合多股流复合膨胀空分流程装置,该装置包括原料气压缩系统、预冷及纯化系统和低温分离系统,所述的原料气压缩系统包括空气压缩机C01和增压机C05;所述的预冷及纯化系统包括空气冷却塔E20、水冷塔E21、冷水机组R20、冷却水泵P20、冷冻水泵P21、纯化器R01、纯化器R02;所述的低温分离统包括高温增压膨胀机ETC1-ET01、低温增压膨胀机ETC2-ET02、主换热器E01、过冷器E03、下塔T01、主冷凝蒸发器E02、上塔T02、粗氩塔T10、粗氩冷凝器E10、精氩塔T11、精氩冷凝器E16、精氩蒸发器E15。
[n0010] 作为优选:所述空气压缩机C01连接冷却塔E20和水冷塔E21,其中冷却塔E20和水冷塔E21分别通过冷却水泵P20和冷却水泵P21连接冷水机组R20,所述冷却塔E20分别连接并联的第一纯化器R01和第二纯化器R02,所述第一纯化器R01和第二纯化器R02后方通过一路管道连接换热器E01,另一路管道连接增压机C05。
[n0011] 作为优选:所述增压机C05后方通过三路管道分别连接换热器E01、低温膨胀机增压端ETC2、高温膨胀机增压端ETC1,所述低温膨胀机增压端ETC2增压冷却后进入换热器E01,冷却后抽出至低温膨胀机ET2膨胀,膨胀后进入下塔T01,所述高温膨胀机增压端ETC1增压后进入换热器E01,一部分液化成液空节流后,一起送入下塔T01,另一部分经换热器E01冷却至一定温度后中抽进入高温膨胀机ET1进行膨胀,膨胀后的空气进入换热器进一步冷却至接近露点温度,进入下塔T01精馏,所述高温膨胀机ET01与低温膨胀机ET02并联设计,装置调节更灵活,在液体产量低时,可关闭1台或2台膨胀机。
[n0012] 作为优选:所述下塔T01连接液氮泵P05和过冷器E03,该E03连接上塔T02,上塔T02连接粗氩塔T10,所述粗氩塔T10上方设有粗氩冷凝器E10,该粗氩冷凝器E10与精氩塔T11连接,所述精氩塔T11下方设有精氩蒸发器E15,所述主冷凝蒸发器E02连接液氧泵P03,液氧泵P03与换热器E01连接。
[n0013] 一种低耦合多股流复合膨胀空分流程的方法为:
[n0014] 步骤1:原料空气经空气压缩机C01加压到一定压力后,经空气冷却塔E20将原料空气温度降到一定温度。空气冷却塔E20为双级规整填料塔,底部有一定高度的不锈钢填料。利用来自循环水系统的冷却水和经水冷塔E21和冷水机组R20进一步冷却的冷冻水与空气直接接触分级冷却。冷却后的加工空气进入纯化器R01,吸附除去残余的水份、二氧化碳和碳氢化合物,纯化器R01出口空气中的水分露点≤-70℃且二氧化碳小于1 ppm。
[n0015] 步骤2:干燥洁净的空气一部分直接进入换热器E01冷却至接近露点进入下塔T01。其余气体经过空气增压机C05压缩后分为三股,其中一股空气直接送入换热器E01,为液氧液氮提供气化热,冷却成液空节流后送入下塔T01。其中一股进入低温膨胀机增压端ETC2增压冷却后进入换热器E01,冷却至一定温度后抽出至低温膨胀机ET2膨胀,膨胀后进入下塔T01;最后一股空气经高温膨胀机增压端ETC1增压后进入换热器E01,一部分液化成液空节流后,一起送入下塔T01,另一部分经换热器E01冷却至一定温度后中抽进入高温膨胀机ET1进行膨胀,膨胀后的空气进入换热器进一步冷却至接近露点温度,进入下塔T01精馏。高温膨胀机ET01与低温膨胀机ET02并联设计,装置调节更灵活,在液体产量低时,可关闭1台或2台膨胀机。
[n0016] 步骤3:下塔T01顶部获得纯度较高的液氮,抽取部分液体经液氮泵P05增压至所需压力送入换热器E01与高压空气换热,气化成压力氮气产品,送入氮气产品管网。剩余液氮经过冷器E03后,节流进入上塔T02为上塔精馏提供回流液,抽出部分液氮作为液体产品送入下游储存与后备系统。下塔T01底部的富氧液体经过冷器E03后,节流进入上塔T02参与精馏。主冷凝蒸发器E02获得纯度较高的液氧,抽取适量液氧经液氧泵P03增压至所需压力送入换热器E01与高压空气换热,气化成压力氧气产品,送入氧气产品管网。部分液氧经过冷器E03过冷后作为液体产品送入下游储存与后备系统。上塔T02中部抽取富氧气体作为粗氩塔T10的原料气,富氧液空与上升粗氩气在粗氩冷凝器E10中进行换热,为粗氩塔T10提供冷量。粗氩冷凝器E10得到氧纯度为2ppm的粗氩液,送入精氩塔T11进一步精馏除氮。精氩蒸发器E15为精馏提供热量,精氩冷凝器E16为精馏提供冷量,在精氩塔T11底部得到纯液氩产品,送入下游储存系统。
权利要求:
Claims (4)
[0001] 1.一种低耦合多股流复合膨胀空分流程装置,该装置包括原料气压缩系统、预冷及纯化系统和低温分离系统,其特征在于所述的原料气压缩系统包括空气压缩机和增压机;所述的预冷及纯化系统包括空气冷却塔、水冷塔、冷水机组、冷却水泵、冷冻水泵、第一纯化器和第二纯化器;所述的低温分离统包括高温增压膨胀机、低温增压膨胀机、主换热器、过冷器、下塔、主冷凝蒸发器、上塔、粗氩塔、粗氩冷凝器、精氩塔、精氩冷凝器、精氩蒸发器。
[0002] 2.根据权利要求1所述的低耦合多股流复合膨胀空分流程装置,其特征在于所述空气压缩机连接并联的冷却塔和水冷塔,其中冷却塔和水冷塔分别通过冷却水泵和冷冻水泵连接冷水机组,所述冷却塔分别连接并联的第一纯化器和第二纯化器,所述第一纯化器和第二纯化器的后方通过一路管道直接连接换热器,另一路管道连接增压机。
[0003] 3.根据权利要求2所述的低耦合多股流复合膨胀空分流程装置,其特征在于所述增压机后方通过三路管道分别连接换热器、低温膨胀机增压端、高温膨胀机增压端,所述低温膨胀机增压端增压冷却后进入换热器,冷却后抽出至低温膨胀机膨胀,膨胀后进入下塔,所述高温膨胀机增压端增压后进入换热器,一部分冷却成液空并节流后,一起送入下塔,另一部分经换热器冷却至一定温度后中抽进入高温膨胀机进行膨胀,膨胀后的空气进入换热器进一步冷却至接近露点温度,进入下塔精馏,所述高温膨胀机与低温膨胀机并联设计,在液体产量低时,可关闭1台或2台膨胀机。
[0004] 4.根据权利要求3所述的低耦合多股流复合膨胀空分流程装置,其特征在于所述下塔连接液氮泵和过冷器,该过冷器连接上塔,上塔连接粗氩塔,所述粗氩塔上方设有粗氩冷凝器,该粗氩冷凝器与精氩塔连接,所述精氩塔下方设有精氩蒸发器,所述主冷凝蒸发器连接液氧泵,液氧泵与换热器连接。
类似技术:
公开号 | 公开日 | 专利标题
US6131407A|2000-10-17|Natural gas letdown liquefaction system
CN103215093B|2014-06-18|小型撬装式氮膨胀天然气液化系统及其方法
CN103062990B|2015-07-08|液体空分装置及工艺
CN105066587A|2015-11-18|深冷分离及生产低纯度氧、高纯度氧和氮的装置及方法
CN108731379A|2018-11-02|一种液体量可调且同时产多规格氧气产品的空分设备及生产方法
CN103292576A|2013-09-11|通过低温蒸馏分离空气的方法和设备
CN103175381A|2013-06-26|低浓度煤层气含氧深冷液化制取lng工艺
CN205373261U|2016-07-06|低液体高提取率低压正流膨胀大型内压缩空分系统
CN214333201U|2021-10-01|一种低耦合多股流复合膨胀空分流程装置
CN204115392U|2015-01-21|带补气压缩机的全液体空分设备
CN109323534A|2019-02-12|一种通过低温精馏法提纯空气制取高压氧气方法及装置
CN209605479U|2019-11-08|一种使用中压精馏塔降低空分能耗装置
WO2021043182A1|2021-03-11|一种利用lng冷能的空分装置和方法
CN112229142A|2021-01-15|一种低耦合多股流复合膨胀空分流程装置及方法
US4507134A|1985-03-26|Air fractionation method
CN209085172U|2019-07-09|一种液体量可调且同时产多规格氧气产品的空分设备
CN103557675A|2014-02-05|合成氨化工尾气的深冷精馏液化系统及方法
CN1038514A|1990-01-03|生产高压氧和高压氮的空气分离流程
CN208443098U|2019-01-29|大液体量制取的空分装置
CN100400995C|2008-07-09|空气分离的方法和装置
CN110260594A|2019-09-20|一种产品氮气生产装置及其方法
CN100443838C|2008-12-17|一种返流膨胀空气分离的方法和装置
CN202547275U|2012-11-21|从空气中制取低纯度氧气的深冷法分离装置
CN102052821A|2011-05-11|一种空气分离方法
CN204202302U|2015-03-11|一种深冷分离提纯氮气及液氮的装置
同族专利:
公开号 | 公开日
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2021-10-01| GR01| Patent grant|
2021-10-01| GR01| Patent grant|
优先权:
申请号 | 申请日 | 专利标题
CN202022445511.8U|CN214333201U|2020-10-29|2020-10-29|一种低耦合多股流复合膨胀空分流程装置|CN202022445511.8U| CN214333201U|2020-10-29|2020-10-29|一种低耦合多股流复合膨胀空分流程装置|
[返回顶部]